0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 306 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 504 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 364 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 RewriteLemmaProof (LOWER BOUND(ID), 297 ms)
↳17 BEST
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^1, INF)
↳21 typed CpxTrs
↳22 LowerBoundsProof (⇔, 0 ms)
↳23 BOUNDS(n^1, INF)
↳24 typed CpxTrs
↳25 LowerBoundsProof (⇔, 0 ms)
↳26 BOUNDS(n^1, INF)
↳27 typed CpxTrs
↳28 LowerBoundsProof (⇔, 0 ms)
↳29 BOUNDS(n^1, INF)
↳30 typed CpxTrs
↳31 LowerBoundsProof (⇔, 0 ms)
↳32 BOUNDS(n^1, INF)
f(S(x'), S(x)) → h(g(x', S(x)), f(S(S(x')), x))
h(0, S(x)) → h(0, x)
h(0, 0) → 0
g(S(x), S(x')) → h(f(S(x), S(x')), g(x, S(S(x'))))
g(S(x), 0) → 0
f(S(x), 0) → 0
h(S(x), x2) → h(x, x2)
g(0, x2) → 0
f(0, x2) → 0
f(S(x'), S(x)) → h(g(x', S(x)), f(S(S(x')), x))
h(0', S(x)) → h(0', x)
h(0', 0') → 0'
g(S(x), S(x')) → h(f(S(x), S(x')), g(x, S(S(x'))))
g(S(x), 0') → 0'
f(S(x), 0') → 0'
h(S(x), x2) → h(x, x2)
g(0', x2) → 0'
f(0', x2) → 0'
They will be analysed ascendingly in the following order:
h < f
f = g
h < g
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
h, f, g
They will be analysed ascendingly in the following order:
h < f
f = g
h < g
Induction Base:
h(gen_S:0'2_0(0), gen_S:0'2_0(0)) →RΩ(1)
0'
Induction Step:
h(gen_S:0'2_0(0), gen_S:0'2_0(+(n4_0, 1))) →RΩ(1)
h(0', gen_S:0'2_0(n4_0)) →IH
gen_S:0'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_S:0'2_0(+(1, 0)), gen_S:0'2_0(1))
Induction Step:
g(gen_S:0'2_0(+(1, +(n867_0, 1))), gen_S:0'2_0(1)) →RΩ(1)
h(f(S(gen_S:0'2_0(+(1, n867_0))), S(gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n867_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(g(gen_S:0'2_0(+(1, n867_0)), S(gen_S:0'2_0(0))), f(S(S(gen_S:0'2_0(+(1, n867_0)))), gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n867_0)), S(S(gen_S:0'2_0(0))))) →IH
h(h(*3_0, f(S(S(gen_S:0'2_0(+(1, n867_0)))), gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n867_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(*3_0, 0'), g(gen_S:0'2_0(+(1, n867_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(*3_0, 0'), h(f(S(gen_S:0'2_0(n867_0)), S(S(gen_S:0'2_0(0)))), g(gen_S:0'2_0(n867_0), S(S(S(gen_S:0'2_0(0))))))) →RΩ(1)
h(h(*3_0, 0'), h(h(g(gen_S:0'2_0(n867_0), S(S(gen_S:0'2_0(0)))), f(S(S(gen_S:0'2_0(n867_0))), S(gen_S:0'2_0(0)))), g(gen_S:0'2_0(n867_0), S(S(S(gen_S:0'2_0(0)))))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n867_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n8670)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
f(gen_S:0'2_0(+(1, 0)), gen_S:0'2_0(1))
Induction Step:
f(gen_S:0'2_0(+(1, +(n3763_0, 1))), gen_S:0'2_0(1)) →RΩ(1)
h(g(gen_S:0'2_0(+(1, n3763_0)), S(gen_S:0'2_0(0))), f(S(S(gen_S:0'2_0(+(1, n3763_0)))), gen_S:0'2_0(0))) →RΩ(1)
h(h(f(S(gen_S:0'2_0(n3763_0)), S(gen_S:0'2_0(0))), g(gen_S:0'2_0(n3763_0), S(S(gen_S:0'2_0(0))))), f(S(S(gen_S:0'2_0(+(1, n3763_0)))), gen_S:0'2_0(0))) →IH
h(h(*3_0, g(gen_S:0'2_0(n3763_0), S(S(gen_S:0'2_0(0))))), f(S(S(gen_S:0'2_0(+(1, n3763_0)))), gen_S:0'2_0(0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n867_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n8670)
f(gen_S:0'2_0(+(1, n3763_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n37630)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_S:0'2_0(+(1, 0)), gen_S:0'2_0(1))
Induction Step:
g(gen_S:0'2_0(+(1, +(n8837_0, 1))), gen_S:0'2_0(1)) →RΩ(1)
h(f(S(gen_S:0'2_0(+(1, n8837_0))), S(gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n8837_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(g(gen_S:0'2_0(+(1, n8837_0)), S(gen_S:0'2_0(0))), f(S(S(gen_S:0'2_0(+(1, n8837_0)))), gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n8837_0)), S(S(gen_S:0'2_0(0))))) →IH
h(h(*3_0, f(S(S(gen_S:0'2_0(+(1, n8837_0)))), gen_S:0'2_0(0))), g(gen_S:0'2_0(+(1, n8837_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(*3_0, 0'), g(gen_S:0'2_0(+(1, n8837_0)), S(S(gen_S:0'2_0(0))))) →RΩ(1)
h(h(*3_0, 0'), h(f(S(gen_S:0'2_0(n8837_0)), S(S(gen_S:0'2_0(0)))), g(gen_S:0'2_0(n8837_0), S(S(S(gen_S:0'2_0(0))))))) →RΩ(1)
h(h(*3_0, 0'), h(h(g(gen_S:0'2_0(n8837_0), S(S(gen_S:0'2_0(0)))), f(S(S(gen_S:0'2_0(n8837_0))), S(gen_S:0'2_0(0)))), g(gen_S:0'2_0(n8837_0), S(S(S(gen_S:0'2_0(0)))))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n8837_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n88370)
f(gen_S:0'2_0(+(1, n3763_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n37630)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n8837_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n88370)
f(gen_S:0'2_0(+(1, n3763_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n37630)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n867_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n8670)
f(gen_S:0'2_0(+(1, n3763_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n37630)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
g(gen_S:0'2_0(+(1, n867_0)), gen_S:0'2_0(1)) → *3_0, rt ∈ Ω(n8670)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.